=" TRAEGERe Sollnerstr. 9 . 92637 Weiden . info@traeger.de . +49 (0)961482300 0 e e NENTS

OPC UA SDK

Client + Server Development

Server Development Introduction

Tested? You want it?

License Model Prices Quotation Order Now

Server Development Introduction 1/8 2024/04/19 23:43

https://opcua.traeger.de/en/#licensemodel
https://opcua.traeger.de/en/#prices
https://opcua.traeger.de/en/purchase-opc-ua-sdk-net/
https://opcua.traeger.de/en/purchase-opc-ua-sdk-net/
https://www.traeger.de
mailto:info@traeger.de?subject=Server Development Introduction

== TRAEGERDe

=== TRAEGER pe Solinerstr. 9 . 92637 Weiden . info@traeger.de . +49 (0)961 48 23 0 0 INDLSTEY COMPONENTS

The Server

Start

This is happening on calling 'Start":

Checking, if an address was set (Address Property).

The Server changes its status (OpcServer.State property) to the value Starting.

The Server checks its configuration for validity and conclusiveness.

Next the Server tries to create a host for every endpoint description.

What follows is the start of all Managers (NodeManager, SessionManager, ...)

Finally, every created host responsible for the endpoint-specific communication with the Client
gets started.

7. The Server changes its status (OpcServer.State property) to the value Started.

ok wnhH

Stop
This is happening on calling 'Stop":

The Server changes its status (OpcServer.State property) to the value Stopping.
Closing all Managers (NodeManager, SessionManager, ...)

The Server releases all gathered resources.

Closing the hosts of endpoint descriptions.

The Server changes its status (OpcServer.State property) to the value Stopped.

Aol

Parameters

In order for the Server to be able to give the Clients access to its OPC UA Services, the right parameters
have to be determined. In general the server address (OpcServer.Address property) is needed. The
Uri instance (= Uniform Resource Identifier) supplies all Clients the primarily necessary information via the
server. For example, the server address “opc.tcp://192.168.0.80:4840" contains the information of the
concept “opc.tcp” (possible are “http”, “https”, “opc.tcp”, “net.tcp” and “net.pipe”), which determines via
which protocol the data shall be exchanged. Generally, “opc.tcp” is advisable for OPC UA Servers in a local
network. Servers out of the local network should use “http”, even better “https”. Furthermore the address
defines that the server is carried out on the computer with the IP address “192.168.0.80” and listens to
requests via the port with the number “4840" (which is default for OPC UA, customized port numbers are
also possible). Instead of the static IP address the DNS name of the computer can also be used, so instead

of “127.0.0.1" you could also use “localhost”.

If the server shall provide no endpoint for data exchange with savety mode “None” (also additionally
possible are “Sign” and “SignAndEncrypt”) as its policy, at least one Endpoint-Policy has to be
manually configured (OpcServer.Security.EndpointPolicies property). If, however, an endpoint with
the Property “None” is supplied by the Server, a Client can select this one automatically for an easy and
quick connection. When a policy level (a number) is assigned according to the OPC Foundation to the
separate Endpoint Policies during the definition of the endpoints, Clients can handle those appropriately.
Here the OPC intends that the higher the level of the Policy of an endpoint, the “better” that endpoint
(note that this is merely a neither watched nor imposed guideline).

Server Development Introduction 2/8 2024/04/19 23:43

https://www.traeger.de
mailto:info@traeger.de?subject=Server Development Introduction

== TRAEGERDe

=== TRAEGER pe Solinerstr. 9 . 92637 Weiden . info@traeger.de . +49 (0)961 48 23 0 0 INDLSTEY COMPONENTS

If the Server shall use an access control, for example via an ACL (= Access Control List), the user
data has to be determined for identification of possible / valid identities of users of the Server
(this also works in a running system). Here it is possible to determine the identities of users through a
username-password pair (OpcServerldentity class) or through a certificate (OpcCertificateldentity
class). Those identities have then to be communicated to the Server
(OpcServer.Security.UserNameAcl/CertificateAcl property). Those access control lists have to be
activated in order for the server to recognize them
(OpcServer.Security.UserNameAcl/CertificateAcl.IsEnabled property).

Endpoints

Endpoints result from the crossing of the used Base-Addresses of the Server and the security strategies
supported by the Server. The results are the Base-Addresses of every scheme-port pair supported, while
several schemes (possible are “http”, “https”, “opc.tcp”, “net.tcp” and “net.pipe”) can be determined for
data exchange on different ports. The hereby linked policies determine the procedure during the data
exchange. Consisting of the Policy Level, the Security-Mode and the Security-Algorithm, every policy
determines the kind of secure data exchange.

For example, when two Security-Policies are followed, they can be defined as follows:

e Security-Policy A: Level=0, Security-Mode=None, Security-Algorithm=None
e Security-Policy B: Level=1, Security-Mode=Sign, Security-Algorithm=Basic256

When furthermore, for example, three Base-Addresses are combined for different schemes as follows:

e Base-Address A: "https://mydomain.com/"
e Base-Address B: "opc.tcp://192.168.0.123:4840/"
e Base-Address C: "opc.tcp://192.168.0.123:12345/"

The results will be the following endpoint descriptions through the crossing:

e Endpoint 1: Address="https://mydomain.com/", Level=0, Security-Mode=None, Security-
Algorithm=None

Endpoint 2: Address="https://mydomain.com/", Level=1, Security-Mode=Sign, Security-
Algorithm=Basic256

Endpoint 3: Address="opc.tcp://192.168.0.123:4840/", Level=0, Security-Mode=None, Security-
Algorithm=None

Endpoint 4: Address="opc.tcp://192.168.0.123:4840/", Level=1, Security-Mode=Sign, Security-
Algorithm=Basic256

Endpoint 5: Address="opc.tcp://192.168.0.123:12345/", Level=0, Security-Mode=None, Security-
Algorithm=None

Endpoint 6: Address="opc.tcp://192.168.0.123:12345/", Level=1, Security-Mode=Sign, Security-
Algorithm=Basic256

Here the address part of the endpoint is always determined by the Server (via constructor or via Address
property). While the Server defines an endpoint with the Security-Mode “None” by default, the policy of the
endpoint has to be configured manually (OpcServer.Security.EndpointPolicies property) when none of
this kind or additional ones shall be used.

Server Development Introduction 3/8 2024/04/19 23:43

https://www.traeger.de
mailto:info@traeger.de?subject=Server Development Introduction

== TRAEGERDe

=== TRAEGER pe Solinerstr. 9 . 92637 Weiden . info@traeger.de . +49 (0)961 48 23 0 0 INDLSTEY COMPONENTS

Information about Certificates

Certificates in OPC UA

Certificates are used to ensure the authenticity and integrity of Client and Server applications.
Therefore they act as a kind of identity card for Client as well as Server application. This “identification
card” has to be stored somewhere as it exists as a form or data. The decision on where certificates are
stored is individual.

There are different types of Stores for certificates:

e Store for user certificates
The Store also called Application Certificate Store exclusively contains certificates of those
applications that use this Store as an Application Certificate Store. Here a Client / Server application
saves its own certificate.

o Store for certificates from trustworthy certificate issuers
The Store also called Trusted Issuer Certificate Store exclusively contains certificates from
certificate issuers that issues further certificates. Here a Client / Server application saves all
certificates from issuers whose certificates shall be treated as trusted by default.

o Store for trustworthy certificates
The Store also called Trusted Peer Store exclusively contains certificates treated as trusted. Here
a Client saves the certificates from trusted Servers and a Server saves the certificates from
trusted Clients.

o Store for rejected certificates
The Store also called Rejected Certificate Store exclusively contains certificates that are decreed
as not trusted. Here a Client saves the certificates from not trusted Servers and a Server saves
the certificates from not trusted Clients.

Regardless of the Store being located somewhere in the system or in the data system via a list, generally
certificates in the Trusted Store are trusted and certificates in the Rejected Store are untrusted.
Certificates not belonging to eeither of the former are automatically saved in the Trusted Store, if the
certificate of the certificate issuer mentioned in the certificate is deposited in the Trusted Issuer Store;
otherwise it is automatically saved in the Rejected Store. Even if a trustworthy certificate has expired or if
its deposited information cannot be successfully verified through the certification center the certificate is
graded as not trustworthy and saved in the Rejected Store. During this process it also is removed from the
Trusted Peer Store. A certificate can also expire when it is listed in a CRL (=Certificate Revocation List),
which can be kept separately in the concerning store.

A certificate that the Client receives from the Server or the other way around is for the moment always
classified as unknown and therefore also treated as untrusted. In order for a certificate to be treated as
trusted it must be declared as such. This happens by saving the certificate of the Client in the Trusted
Store of the Server and the certificate of the Server in the Trusted Store of the Client.

Dealing with a Server certificate at the Client:

1. The Client establishes the certificate on the Server on whose Endpoint it shall connect with.
2. The Client verifies the certificate of the Server.
1. Is the certificate valid?
1. Has the effective date expired?
2. Is the issuer's certificate valid?
2. Does the certificate exist in the Trusted Peer Store?

Server Development Introduction 4/8 2024/04/19 23:43

https://www.traeger.de
mailto:info@traeger.de?subject=Server Development Introduction

== TRAEGERDe

=== TRAEGER pe Solinerstr. 9 . 92637 Weiden . info@traeger.de . +49 (0)961 48 23 0 0 INDLSTEY COMPONENTS

1. Isitlisted in a CRL?
3. Does the certificate exist in the Rejected Store?
3. When the certificate is trusted, the Client establishes a connection to the server.

Dealing with a Client certificate at the Server:

1. The Server receives the Client's certificate from the Client while connecting.
2. The Server verifies the certificate of the Client.
1. Is the certificate valid?
1. Has the effective date expired?
2. Is the issuer's certificate valid?
2. Does the certificate exist in the Trusted Peer Store?
1. Isit listed in a CRL?
3. Does the certificate exist in the Rejected Store?
3. When the certificate is trusted, the Server allows the connection of the Client and operates it.

In case the verification of the certificate fails at the respective counterpart the verification can be
extended by custom mechamisms and still decided on user scale, if the certificate gets accepted or not.

Types of Certificates

General: Self-Signed Certificates vs. Signed Certificates

A certificate is comparable to a document. A document can be issued by everybody and can also be signed
by everybody. However, the main difference here is, if the signee of a document really vouches for its
correctness (like a notary) or if the signee is the owner of the document itself. Especially documents of the
latter are not really inspiring confidence because no (legally) recognized instance as e.g. a notary vouches
for the owner of the document.

As certificates are comparable to documents and also have to show a (digital) signature, the situation here
is the same. The signature of a certificate has to tell the recipient of the certificate copy, who vouches for
this certificate. Herefore it always applies that the issuer of a certificate also signs it. When the issuer of a
certificate equals the subject of the certificate, you call this a self-signed certificate (subject equals
issuer). When the issuer of a certificate does not equal the subject of the certificate, you call this a
(simple / normal / signed) certificate (subject does not equal issuer).

As certificates are used especially in the context of the OPC UA authentication of an identity (of a certain
Client or Server application), signed certificates should be used as application certificates for the own
application. If, however, the issuer of the certificate also its owner, this self-signed certificate should only
be trusted when the owner is rated as trusted. Such certificates were, as described, signed by the issuer of
the certificate. Therefore, the issuer certificate has to be located in the Trusted Issuer Store of the
application. When the issuer certificate cannot be found there , the certificate chain is declared incomplete
and the certificate is not accepted by the counterpart. Yet, if the issuer certificate of the issuer of the
application certificate is not a self-signed certificate, the certificate of its issuer has to be available in the
Trusted Issuer Store.

User Identification

User Identification through Certificates

Next to the use of a certificate as an identification card for Client / Server applications, a certificate can
also be used to identify a user. A Client application is always operated by a certain user by whom it

Server Development Introduction 5/8 2024/04/19 23:43

https://www.traeger.de
mailto:info@traeger.de?subject=Server Development Introduction

1
== TRAEGER oe Sollnerstr. 9 . 92637 Weiden . info@traeger.de . +49 (0)961 48 23 0 0 TRAEGER e

INDUSTRY COMPONENTS

operates with the Server. Depending on the Server configuration a Server can request additional
information about the identity of the Client's user from the Client. The user has the possibility to prove his
identity through a certificate. How thoroughly a Server is examining the certificate on validity, authenticity
and confidentiality depends on the Server. The Server provided by the Framework exclusively checks, if
the Thumbprint information of the user identity can be found in its ACL (=Access Control List) for
certificate-based user identities.

Aspects of Security

Productive use

The primary goal of the Framework is to make getting the grips of the OPC UA as easy as possible. This
basic thought sadly also leads to the fact that without secondary configuration of the Server a completely
save connection / communication between Client and Server does not occur. Yet, if the final Spike has
been implemented and tested, second thought should be given to the aspects of security.

Even if the Server is only run within a local network one should consider the use of access control lists
(OpcServer.Security.UserNameAcl/CertificateAcl property). Here user identities can be defined via a
certificate or a username-password pair. A Certificate Identity increases security in signed data
transmission, for example.

Especially in cases of the Server being accessible publicly, other Security-Policies with appropriately higher
Security-Mode and a matching Security-Algorithm should be negotiated. The Security-Policy-Mode “None”
used by default is in this matter literally the “Great Wide Open” into your Server
(OpcServer.Security.EndpointPolicies Properties). Last but not least one should consider the access
via an anonymous user identity (OpcServer.Security.AnonymousAcl.IsEnabled property). According to
the OPC Foundation every Endpoint Policy used above its level should stress its “quality”, in which the rule
applies that the higher the level, the “better” the endpoint this policy uses.

For simplified handling of certificates the Server accepts every certificate by default
(OpcServer.Security.AutoAcceptUntrustedCertificates property), also those it should deny under
productive conditions because only certificates known to the Server (located in the Trusted Peer Store)
apply as truly trusted. Apart from that the validity of a certificate should always be verified, including the
“expiration date” of the certificate, for example. Other properties of the certificate or looser rules for the
validity and trustworthiness of a Client certificate can be furthermore carried out manually
(OpcServer.CertificateValidationFailed event).

Server Development Introduction 6/8 2024/04/19 23:43

https://en.wikipedia.org/wiki/Spike_(software_development)
https://www.traeger.de
mailto:info@traeger.de?subject=Server Development Introduction

1
== TRAEGER oe Sollnerstr. 9 . 92637 Weiden . info@traeger.de . +49 (0)961 48 23 0 0 TRAEGER e

Table of Contents

Tested? YOU WANL it? ... e e e e e e e e s

TRE SEIVEI ...ttt ettt e et e et e e e e e e et e e e e e e ettt s e e e e e e e et a e eeeees
Y = | AP PPPTPPPRR
1o o O TP TP UPPUPPTPPPPPP
e 1= 1 =] PP
BN APOINES e

Information about CertifiCatescccoooiiiiiiiiiiiii e
CartifiCAtES IN OPC LA e e e ettt e e e e e e s e e e e e e e e s bbb s e e eeeaaaees
TYPES Of CeItifICAtES ..ot
User ldentification
Aspects of Security
Productive use

Server Development Introduction 7/8 2024/04/19 23:43

https://www.traeger.de
mailto:info@traeger.de?subject=Server Development Introduction

= TRAEGERDe

=== TRAEGER pe Solinerstr. 9 . 92637 Weiden . info@traeger.de . +49 (0)961 48 23 0 0 INDUSTEY COMPONENTS

Server Development Introduction 8/8 2024/04/19 23:43

https://www.traeger.de
mailto:info@traeger.de?subject=Server Development Introduction

	Table of Contents
	Server Development Introduction
	Tested? You want it?
	The Server
	Start
	Stop
	Parameters
	Endpoints

	Information about Certificates
	Certificates in OPC UA
	Types of Certificates
	User Identification
	Aspects of Security
	Productive use

